COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

MINIMALLY 3-CONNECTED ISOTROPIC SYSTEMS

L. ALLYS

Received July 7, 1990 Revised July 14, 1992

Isotropic systems are structures which unify some properties of 4-regular graphs and self-dual properties of binary matroids, such as connectivity and minors. In this paper, we find the minimally 3-connected isotropic systems. This result implies the binary part Tutte's wheels and whirls theorem.

1. Introduction

Isotropic systems are introduced by André Bouchet in [2]–[6] to unify some properties of 4-regular graphs and self-dual properties of binary matroids.

An isotropic system can be associated to a binary matroid (actually, to a pair of dual binary matroids) and also to a 4-regular graph, but there are isotropic systems that cannot be obtained in this way.

The connectivity of a matroid in Tutte's sense is self-dual. A. Bouchet defines in [6] the notion of k-connectivity for isotropic systems in such a way that an isotropic system S derived from a binary matroid is k-connected if and only if the matroid is k-connected.

Any isotropic system is associated with some simple graph, called *fundamental* graph, and the former is 3-connected if and only if the latter is prime, as defined by W. Cunningham [8].

A theorem of Tutte [9] says that a 3-connected matroid M has a 3-connected simple minor, except if M is either a wheel or a whirl. We prove that a similar result holds for 3-connected isotropic systems.

In Section 2, we define isotropic systems and recall basic properties. In Section 3, we give some technical lemmas about 3-connectivity. Section 4 contains the main result. This result is similar to Tutte's theorem about minor-minimal 3-connected matroids and, in fact, implies the "binary part" of this theorem. Moreover, the main result implies a strengthening of a theorem of A. Bouchet about reduction of prime graphs. These two applications are given in Section 5.

2. Notation and basic properties

Let A be a (finite) set. We denote by |A| the number of elements of A. We will denote by a the singleton $\{a\}$.

For two sets A and B, we will denote by $A \triangle B$ the set $(A \setminus B) \cup (B \setminus A)$. For a set V, 2^V is the set of the subsets of V; 2^V is a linear space over GF_2 under the operation \triangle .

Let G = (V, E) be a simple graph with vertex set V and edge set E. For any vertex $v \in V$, the neighbourhood of v is the set of vertices $n(v) = \{u \in V : uv \in E\}$. Notice that $v \notin n(v)$. The mapping $v \to n(v)$ is the neighbourhood function of G. For any vertex v, $G \setminus v$ is the subgraph induced by $V \setminus v$.

2.1 Isotropic systems

Let us fix a 2-dimensional linear space K over GF_2 . The space K contains $2^2=4$ elements. We set $K=\{0,x,y,z\}$. One easily verifies that x+x=y+y=z+z=x+y+z=0. For any $a,b\in K$, let $\langle a,b\rangle=1$ if $0\neq a\neq b\neq 0$, $\langle a,b\rangle=0$ otherwise. One may verify that the mapping $(a,b)\to\langle a,b\rangle$ is bilinear, symmetric and nondegenerate. Let V be a finite set. The preceding linear form can be extended to K^V by setting $\langle X,Y\rangle=\sum(\langle X(v),Y(v)\rangle:v\in V)\pmod{2}$ for any $X,Y\in K^V$. Notice that, for any $X\in K^V$, we have $\langle X,X\rangle=\sum(\langle X(v),X(v)\rangle:v\in V)=0$. We will denote by L^\perp the orthogonal complement of a subspace L.

Let $X \in K^{\hat{V}}$. The support of X is the set $\{v \in V : X(v) \neq 0\}$, and we denote it by $\sigma(X)$. For a subset P of V and a vector X, we denote by $X \cdot P$ the vector defined by $X \cdot P(v) = X(v)$ if $v \in P$, otherwise $X \cdot P(v) = 0$. For a vector $X \in K^V$, we let $\hat{X} = \{X \cdot P : P \subseteq V\}$. Clearly, for any subsets P and Q of V, we have $X \cdot P + X \cdot Q = X \cdot (P \triangle Q)$. Hence, \hat{X} is a subspace of K^V . Two vectors X and Y of K^V are supplementary if, for any $v \in V$, we have $0 \neq X(v) \neq Y(v) \neq 0$. If X and Y are supplementary then $\sigma(X) = \sigma(Y) = V$ and $\hat{X} \cap \hat{Y} = \{0\}$. Hence, we have $\hat{X} \oplus \hat{Y} = K^V$.

A subspace L of K^V is said to be totally isotropic if $\langle A,B\rangle=0$ for any $A,B\in L$. If L is a totally isotropic subspace of K^V , basic results in linear algebra imply that $\dim(L) \leq \dim(K^V)/2 = |V|$. An isotropic system is a pair S = (L,V) where V is a finite set and L is a totally isotropic subspace of K^V such that $\dim(L) = |V|$. If S = (L,V) is an isotropic system, then $L = L^{\perp}$.

Example. Suppose that M is a binary matroid on V. Let $\mathscr{C} \subseteq 2^V$ be the linear subspace of 2^V spanned by the circuits of M, and let \mathscr{C}^* be the linear subspace spanned by the cocircuits of M. Recall that \mathscr{C}^* is the orthogonal complement of \mathscr{C} for the bilinear form defined on 2^V by $(A,B) \to |A \cap B| \pmod{2}$.

Let X and Y be two supplementary vectors of K^V . Let $L = \{C \cdot X + C^* \cdot Y : C \in \mathcal{C}, C^* \in \mathcal{C}^* \}$. Then S = (L, V) is an isotropic system.

Remark. One can derive several isotropic systems from a binary matroid, by arbitrarily choosing the vectors X and Y. But these isotropic systems are pairwise

isomorphic. We will say "the isotropic system S derived from M", despite the fact that S is not completely defined by M.

2.2 Fundamental graphs

Let G = (V, E) be a simple graph with neighbourhood function n. Consider two supplementary vectors A and B of K^V . For any $v \in V$, let T_V be the vector $A \cdot v + B \cdot n(v)$. One easily verifies that the linear subspace L spanned by $(T_v : v \in V)$ defines an isotropic system S = (L, V). We say that G is a fundamental graph for this isotropic system and that (G, A, B) is a graphic presentation of the system S.

In [5], A. Bouchet proves that, for any isotropic system S = (L, V), there exists some basis $(T_v : v \in V)$ of L with the following properties:

- (i) $\forall u, v, w \in V$, $v \neq u \neq w$, $\langle T_v(u), T_w(u) \rangle = 0$,
- (ii) $\forall u, v \in V$, $u \neq v$, $0 \neq T_v(v) \neq T_u(v)$.

Such a basis will be called a fundamental basis. It allows to define a graphic presentation (G, A, B) of S follows:

- (iii) for any $v \in V$, $B(v) = T_v(v)$;
- (iv) for any $v \in V$, if there exists $u \in V$ such that $T_u(v) \neq 0$, then $A(v) = T_u(v)$, otherwise A(v) is any-null value distinct from B(v);
- (v) uv is an edge of G if and only if $u \neq v$ and $T_u(v) \neq 0$ (which is equivalent to $T_v(u) \neq 0$).

Let G = (V, E) be a simple graph with neighbourhood function n. The local complementation of G at a vertex v involves replacing the subgraph induced by n(v) by the complementary subgraph (an example is given in section 2.5). We denote this simple graph by G^*v . Suppose that (G,A,B) is a graphic presentation of an isotropic system S. Let $A' = A + B \cdot v$ and $B' = B + A \cdot n(v)$. Then, as proved in [5], (G^*v, A', B') is another graphic presentation of S. Moreover, two simple graphs are fundamental graphs of the same isotropic system if and only if there exists a sequence of local complementations that transforms the first graph into the second one.

Example. Suppose that M is a binary matroid on V. Let B be a base of M. The fundamental graph F associated with a base B of M is a bipartite graph defined as follows:

- the two chromatic classes are B and $V\backslash B$;
- for $v \in B$ and $v' \in V \setminus B$, vv' is an edge of G if and only if v belongs to the single circuit of M in $B \cup v'$.

One can verify that F is a fundamental graph of the isotropic system S derived from the matroid M. Conversely, as proved in [4], an isotropic system S such that there exists a bipartite fundamental graph F is derived from a binary matroid. Such an isotropic system is called *bipartite*.

Remark. Notice that not every fundamental graph of a bipartite isotropic system is bipartite. Indeed, by locally complementing a bipartite graph at a vertex of degree at least two, we get a non-bipartite graph.

2.3 Connectivity

Let S = (L, V) be an isotropic system. For any subset A of V, we let $L \times A = \{X \in L : \sigma(X) \subseteq A\}$. Let us identify K^A with the subspace $\{X \in K^V : \sigma(X) \subseteq A\}$. So we have $L \times A = L \cap K^A$, Clearly $L \times A$ is a subspace of K^V . We let $\chi(A) = |A| - \dim(L \times A)$, and we call χ the connectivity function of A.

Proposition 2.3.1. [6] The connectivity function has the following properties:

- (i) $0 \le \chi(A) \le |A|$;
- (ii) $\chi(A) = \chi(V \setminus A)$;
- (iii) $\chi(A) + \chi(B) \ge \chi(A \cup B) + \chi(A \cap B)$ with equality if and only if $L \times A + L \times B = L \times (A \cup B)$.

For completeness, we give a new proof of this proposition:

Proof.

- (i) Notice that $L \times A$ is an isotropic subspace of K^A . Hence $\dim(L \times A) \leq \dim(K^A)/2 = |A|$.
- (ii) Let π be the canonical projection of K^V onto K^A and let $L \cdot A = \pi(L)$. Since $\text{Ker}(\pi) \cap L = L \times (V \setminus A)$, we have

$$\dim(L \cdot A) + \dim(L \times (V \setminus A)) = \dim(L) = |V|.$$

This implies $\chi(V \setminus A) = \dim(L \cdot A) - |A|$.

Let us denote by L_A the orthogonal complement of $L\cdot A$ in K^A . In other words, $L_A=\{X\mid \sigma(X)\subseteq A, \langle X,Y'\rangle=0 \text{ for any } Y'\in L\cdot A\}$. Let $X\in L\times A$ and $Y'\in L\cdot A$. There exists $Y\in L$ such that $Y'=\pi(Y)$. Thus, we have $\langle X,Y'\rangle=\langle X,Y\rangle=0$. This implies that $L\times A\subseteq L_A$. Conversely, let $X\in L_A$ and $Y\in L$. Then $\pi(Y)\in L\cdot A$ and so $0=\langle X,\pi(Y)\rangle=\langle X,Y\rangle$. This implies that $X\in L^\perp$. Hence, as $\sigma(X)\subseteq A$ and $L=L^\perp$, it follows that $X\in L\times A$. Hence $L\times A=L_A$. Therefore, $\dim(L\times A)+\dim(L\cdot A)=\dim(K^A)=2|A|$. It follows:

$$\chi(A) = |A| - \dim(L \times A) = |A| - (2|A| - \dim(L \cdot A))$$
$$= \dim(L \cdot A) - |A| = \chi(V \setminus A).$$

(iii) Obviously, $L \times (A \cap B) = L \times A \cap L \times B$ and $L \times A + L \times B \subseteq L \times (A \cup B)$. Therefore, $\dim(L \times A) + \dim(L \times B) \le \dim(L \times (A \cup B)) + \dim(L \times (A \cap B))$. Since $|A| + |B| = |A \cup B| + |A \cap B|$, we have $\chi(A) + \chi(B) \ge \chi(A \cup B) + \chi(A \cap B)$, with equality if and only if $L \times A + L \times B = L \times (A \cup B)$.

Definitions. Suppose that S = (L, V) is an isotropic system, with connectivity function χ . For any integer k and any subset A of V, we say that A is a k-separation if and only if:

- (i) $|A| \ge k$ and $|V \setminus A| \ge k$;
- (ii) $\chi(A) < k$.

An isotropic system (L, V) is k-connected if and only if there is no k'-separation, with k' < k. An element v is singular if and only if $\chi(v) = 0$. We easily verify that v is singular if and only if v is the support of a vector of L. Two non-singular

elements v and w are twins if and only if $\{v, w\}$ is the support of a vector of L. A triangle is a vector of L whose support is a 3-element set.

Suppose that (G,A,B) is a graphic presentation of (L,V), with fundamental basis $(T_v)_{v\in V}$. Denote by n the neighbourhood function of G. If a vector T of K^V belongs to L, there exists a subset V' of V such that $T = \sum (T_v : v \in V')$. As $v \in V'$ implies $T(v) \neq 0$ (actually T(v) = B(v) or T(v) = A(v) + B(v)), V' must be included in the support of T. Using this remark, one easily verifies that:

- (i) an element $v \in V$ is singular if and only if v is an isolated vertex of G;
- (ii) two elements v and w are twins of L if and only if either v and w are twins in G (i.e, n(v) w = n(w) v) or vw is a pendent edge.

Example. Suppose that M is a binary matroid on a set V. Let M^* be the dual matroid of M. Denote by ϱ and ϱ^* the rank functions of M and M^* . The connectivity function of M is defined by $\chi(A) = \varrho(A) + \varrho^*(A) - |A| = \varrho(A) + \varrho(V \setminus A) - \varrho(V)$, for all $A \subseteq V$. It is proved in [5] that the connectivity function of M coincides with the connectivity function of the isotropic system S derived from M. So M is 3-connected if and only if S is 3-connected.

2.4 Minors

Let S = (L, V) be an isotropic system. Let $v \in V$. For any non-null element t of K, we let $L(v,t) = \{X \in L : X(v) = t \text{ or } X(v) = 0\}$. We define $L|_t^v$ as the projection onto K^{V-v} of L(v,t). A. Bouchet proves in [2] that $(L|_t^v, V \setminus v)$ is an isotropic system. We call $(L|_t^v, V \setminus v)$ a minor of S and we denote it by $S|_t^v$. Minors of isotropic systems have the following graphic interpretation (see [5] for details). Suppose that (G,A,B) is a graphic presentation of L. Then $G \setminus v$ is a fundamental graph of $S|_{A(v)}^v$. Moreover, if G^*v is the graph obtained by a local complementation on v, then $G^*v \setminus v$ is a fundamental graph of $S|_{(A+B)(v)}^v$. Finally, if w is a neighbour of v in G, then $G^*v \cup v$ is a fundamental graph of $S|_{B(v)}^v$.

Example. Let S=(L,V) be the isotropic system derived from a binary matroid M. We use the notation of the example in Section 2.1. One easily verifies that the isotropic system derived from $M\backslash v$ (resp. M/v) is $S|_{Y(v)}^v$ (resp. $S|_{X(v)}^v$). The isotropic system $S|_{X(v)+Y(v)}^v$ is not binary in general.

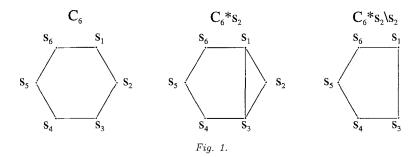
2.5 Cyclic isotropic systems

An isotropic system S=(L,V) is cyclic if there exists a graphic presentation (C_n,A,B) using the n-cycle C_n $(n \ge 5)$ as a fundamental graph. We shall assume $n \ge 5$ to avoid trivial special cases. The main result of this paper is that cyclic isotropic systems are "minimally" 3-connected. We now describe cyclic isotropic system more precisely.

Consider the isotropic system $S_n = (L, \{s_1, s_2, ..., s_n\})$, given by the fundamental basis $(T_i = T_{s_i}): 1 \le i \le n$. Each vector T_i is a column of the following

array:

The reader can easily verify that the associated fundamental graph is C_n with vertex sequence s_1, s_2, \ldots, s_n . A local complementation at s_2 yields the graph $C_n^* s_2$. We notice that $C_n^* s_2 \setminus s_2$ is isomorphic to C_{n-1} . Hence one of the minors of S_n at s_2 is cyclic.



Isotropic systems associated to 4-regular graphs, as defined in [3], will not be considered in this paper.

3. Triangles and 3-connectivity

From now on, all isotropic systems contain at least four elements.

Lemma 3.1. Let S = (L, V) be an isotropic system, with connectivity function χ . For any subset A of V and any $v \in V \setminus A$, we have:

- (i) $\chi(A \cup v) \leq \chi(A)$ if and only if there exists a vector X in $L \times (A \cup v)$ such that $X(v) \neq 0$.
- (ii) $\chi(A \cup v) = \chi(A) 1$ if and only if there exist two vectors X and Y in $L \times (A \cup v)$ such that $0 \neq X(v) \neq Y(v) \neq 0$.

Proof. Let $\pi: L \times (A \cup v) \to K$ be the linear mapping defined by $\pi(U) = U(v)$, for any vector U of $L \times (A \cup v)$. Since the kernel of π is $L \times A$, we have:

$$\dim(L \times (A \cup v)) = \dim(L \times A) + \dim(\operatorname{Im}(\pi)).$$

This implies:

$$\chi(A \cup v) = |A| + 1 - \dim(L \times (A \cup v)) = |A| - \dim(L \times A) - \dim(\operatorname{Im}(\pi)) + 1$$
$$\chi(A \cup v) = \chi(A) - \dim(\operatorname{Im}(\pi)) + 1.$$

- (i) Hence, $\chi(A \cup v) \leq \chi(A)$ if and only if $\text{Im}(\pi)$ is not the null subspace of K, i.e. if there exists a vector X in $L \times (A \cup v)$ such that $X(v) \neq 0$.
- (ii) Furthermore, we have $\chi(A \cup v) = \chi(A) 1$ if and only if $\dim(\operatorname{Im}(\pi)) = 2$, i.e. if there exist two vectors X and Y in $L \times (A \cup v)$ such that $0 \neq X(v) \neq Y(v) \neq 0$.

Proposition 3.2. Let S = (L, V) be an isotropic system. Suppose that $v \in V$ is a non-singular element of L. Assume that χ (resp χ') is the connectivity function of S (resp. of $S|_t^v$, where t is a non-null element of k). Then, for any subset A of $V \setminus v$,

- (i) $\chi(A)-1 \le \chi'(A) \le \chi(A)$, (ii) $\chi'(A)=\chi(A)$ if and only if there exists a vector X in $L\times (A\cup v)$ such that
 - (iii) $\chi(A \cup v) < \chi'(A) < \chi(A \cup v)$.

Proof. Set $V' = V \setminus v$. Let $\pi : K^V \to K^{V'}$ be the canonical projection onto $K^{V'}$. For $X \in L$, $\pi(X) = 0$ if and only if X = 0, because v is non-singular. Hence, for any subspace L_1 of L, $\pi(L_1)$ is isomorphic to L_1 and so, $\dim(\pi(L_1)) = \dim(L_1)$. Set $S' = (L', V') = S|_t^v$. For any subset A of V', we have $\chi'(A) = |A| - \dim(L' \times A)$. Set $L_A = L \times (A \cup v) \cap L(v, t)$. One can easily verify that $L' \times A = \pi(L_A)$. Hence $\dim(L' \times A) = \dim(L_A)$ because L(v,t) is a subspace of L. Obviously, $L \times A \subseteq L_A \subseteq$ $L \times (A \cup v)$. This implies the following inequalities:

$$\begin{split} \dim(L\times A) &\leq \dim(L_A) \leq (L\times (A\cup v)),\\ |A| - \dim(L\times A) &\geq |A| - \dim(L_A) \geq \dim(L\times (A\cup v)),\\ \chi(A) &\geq \chi'(A) \geq \chi(A\cup v) - 1. \end{split}$$

Working with $V' \setminus A (= V \setminus (A \cup v))$ instead of A, we find:

$$\chi(V \setminus (A \cup v)) \ge \chi'(V' \setminus A) \ge \chi(V \setminus A) - 1.$$

By Proposition 2.3.1 (ii), this inequality implies:

$$\chi(A \cup v) \ge \chi'(A) \ge \chi(A) - 1.$$

Moreover, $\chi'(A) = \chi(A) - 1$ if and only if $L_A \neq L \times A$. If $X \in L_A \setminus L \times A$, then $X \in L \times (A \cup v)$ and X(t) = t.

Lemma 3.3. Suppose that T and T' are two triangles of a 3-connected isotropic system. Then one of the following properties holds:

- (i) The supports are disjoints;
- (ii) The supports contain a single common element. On this element, T and T' have the same value;
- (iii) The supports have two common elements. On each common element, T and T' have different values;
 - (iv) T = T'.

Proof. Since $\langle T, T' \rangle = 0$, the number of the elements v that $\langle T(v), T'(v) \rangle \neq 0$ is even. If $T \neq T'$, the support of T + T' must contain at least three elements because a 3connected isotropic system contains neither singular elements nor twins. According to the number of elements in the intersection of the support of T and T', one of the properties above must hold.

Corollary 3.4.

- (i) No isotropic system on a 4-element set is 3-connected.
- (ii) An isotropic system on a 5-element set is 3-connected if and only if it is cyclic.

Comment. This corollary is equivalent to a result about prime graphs (cf. [2] and section 5 of this paper) which says that no graph on four vertices is prime and that all prime graphs on five vertices are locally equivalent to C_5 .

Proof. Suppose that S = (L, V) is a 3-connected isotropic system, with connectivity function χ .

- (i) Suppose that |V|=4 and pick $a \in V$. We have $\chi(V \setminus a) = \chi(a) \le 1$. Hence $L \times (V \setminus a)$ contains two independent vectors. If these two vectors are triangles, L is not 3-connected by Lemma 3.1. Otherwise S must contain singular elements or twins and is obviously not 3-connected.
- (ii) Suppose now that |V|=5 and set $V=\{a,b,c,d,e\}$. If T is a 3-element subset of V then $\chi(T)=\chi(V\backslash T)=2$ and T is the support of a triangle. Hence, $\{a,b,c\}, \{b,c,d\}, \{c,d,e\}, \{d,e,a\}$ and $\{e,a,b\}$ are supports of triangles, which will be denoted by T_b, T_c, T_d, T_e, T_a . One may assume without loss of generality that $T_a(a)=T_b(b)=T_c(c)=T_d(d)=T_e(e)=y$. By Lemma 3.1, we have $0\neq T_a(b)=T_c(b)\neq T_b(b), 0\neq T_b(c)=T_c(c)\neq T_d(c),\ldots$ etc. One may suppose without loss of generality that all these values are equal to x. These five vectors are independent and so they constitute a basis of L. Hence C_5 is a fundamental graph of S.

	T_a	T_b	T_c	T_d	T_e
a	y	\boldsymbol{x}	0	0	x
b	\boldsymbol{x}	y	\boldsymbol{x}	0	0
c	0	x	y	x	0
d	0	0	x	y	\boldsymbol{x}
e	x	0	0	\dot{x}	\boldsymbol{u}

We have to prove that S is 3-connected. Suppose not and pick a 2-separation A. Then $V \setminus A$ or A contains two elements and S should contain twins, which is clearly impossible.

Remark. Suppose that T is a triangle of an isotropic system S=(L,V), with support $\{u,v,w\}$. The minor $S|_{T(v)}^v$ is not 3-connected, because u and w are twins in $L|_{T(v)}^v$.

Lemma 3.5. Let (L,V) be a 3-connected isotropic system. Suppose that, for some $v \in V$, the minors $L|_x^v$ and $L|_y^v$ are not 3-connected. Then there exists a triangle T with T(v) = x or T(v) = y.

Proof. Assume that $U\subseteq V\setminus v$ (resp. $W\subseteq V\setminus v$) is a 2-separation of $S|_x^v$ (resp. of $S|_y^v$). Then $U'=V\setminus (U\cup v)$ and $W'=V\setminus (W\cup v)$ are also 2-separations in the corresponding minors.

Since S is 3-connected, $\chi(U) = 2$ (where χ is the connectivity function in L). Then by Lemma 3.2, there exists a vector $T_x \in L$ such that $\sigma(T_x) \subseteq U + v \subseteq U \cup W + v$

and $T_x(v) = x$. Similarly $\chi(W) = 2$. Then, there exists $T_y \in L$ such that $T_y \subseteq U \cup W + v$ and $T_y(v) = y$. Hence, by Lemma 3.1:

$$\chi(U \cup W \cup v) = \chi(U \cup W) - 1,$$

$$\chi(U \cup W \cup v) + \chi(U \cap W) \le \chi(U \cup W) + \chi(U \cap W) - 1 \le \chi(U) + \chi(W) - 1 \le 3.$$

This implies $|U \cap W| < 2$ or $|U' \cap W'| < 2$. By symmetry, $|U' \cap W| < 2$ or $|U \cap W'| < 2$. One of the four subsets U, U', W, W' must have two elements, say U. Then the 3-element set $U \cup v$ contains $\sigma(T_x)$. Since S is 3-connected, T_x is a triangle which satisfies the conclusion of the theorem.

Lemma 3.5. Let S = (L, V) be a 3-connected isotropic system. Let T be a triangle, with T(a) = T(c) = x, t(b) = Y. Suppose that $L|_y^a$ and $L|_y^c$ are not 3-connected. Then there exist triangles T' and T'' such that:

- (i) T'(a) = T''(c) = y,
- (ii) T(b) = T''(b).

Proof. Let A be a 2-separation of $S|_y^a$. Let χ (resp. χ') be the connectivity function of S (resp. $S|_y^a$). Hence $\chi'(A)=1$. Since S is a 3-connected, this implies that $\chi(A)=2$ by Lemma 3.2. Then, by Lemma 3.2, there exists a vector T_a such that $T_a\in L\times (A\cup a)$ and T(a)=y. Since $A'=(V\setminus a)\setminus A$ is also a 2-separation in the minor $S|_{y'}^a$ there exists a vector T'_a such that $T'_a(a)=y$ and $T'_a\in L\times (A\cup a)$.

Similarly, there exists a 2-separation C in $L|_{y'}^c$, and two vectors T_c and T_c' of L such that:

- $-T_c(c)=T_c'(c)=y;$
- $-T_c \in L \times (C \cup v)$ and $T'_c \in L \times (C' \cup c)$;
- $-|C| \ge 2, |C'| \ge 2.$

By symmetry, we may assume that $b \in A \cap C$.

Claim 1. $a \in C'$, $c \in A'$

Suppose $a \in C$. Then $\langle T'_c, T \rangle = \langle T'_c(c), T(c) \rangle \neq 0$, a contradiction. Therefore $a \in C'$ and similarly $c \in A'$.

It follows that $\langle T'_c(a), T(a) \rangle = \langle T'_a(c), T(c) \rangle = 1$.

Claim 2. $|A \cap C| \le 1$ or $|A' \cap C'| \le 1$.

By submodularity, we get:

$$\chi(A \cup C) + \chi(A \cap C) \le \chi(A) + \chi(C) \le 4.$$

Since $T_a(a) \neq 0$ and $T_a \subseteq A \cup C \cup a$, we have $\chi(A \cup C \cup a) \leq \chi(A \cup C)$. Since $0 \neq T(c) \neq T_c(c) \neq 0$, $\sigma(T_c) \subseteq A \cup C \cup \{a,c\}$ and $\sigma(T) \subseteq A \cup C \cup \{a,c\}$, by Lemma 3.1, we have $\chi(A \cup C \cup \{a,c\}) \leq \chi(A \cup C) - 1$. It follows that $\chi(A \cup C \cup \{a,c\}) + \chi(A \cap C) \leq 3$.

Hence, since the complement of $A \cup C \cup \{a,c\}$ is $A' \cap C'$, we have $\chi(A' \cap C') \le 1$ or $\chi(A \cap C) \le 1$. This implies the claim by 3-connectivity.

Claim 3. $A' \cap C = \emptyset$ or $(|A' \cap C| = |A \cap C'| = 1)$ or $A \cap C' = \emptyset$.

By submodularity, we get:

$$\chi(A' \cup C) + \chi(A' \cap C) \le \chi(A') + \chi(C).$$

Suppose that this inequality is actually an equality. Since $T_c \subseteq C \cup c \subseteq A' \cup C$, there exist two vectors T_1 and T_2 of L such that:

$$-T_c = T_1 + T_2$$

$$--\sigma(T_1)\subseteq C, \ \sigma(T_2)\subseteq (A'\cap C)\cup c.$$

Thus $T_2(a) = T_2(b) = 0$, $T_1(c) = 0$, $T_2(c) = T_c(c) = y$. This implies that $\langle T, T_2 \rangle = \langle T(c), T_2(c) \rangle = \langle T(c), T_c(c) \rangle \neq 0$, a contradiction. Hence

$$\chi(A' \cup C) + \chi(A' \cap C) \le 3.$$

Notice that $\langle T(a), T'_a(a) \rangle \neq 0$. Moreover, the supports of these two vectors are included in $A' \cup C \cup a$. This implies:

$$\chi(A \cap C') = \chi(A' \cup C \cup a) = \chi(A' \cup C) - 1,$$
$$\chi(A \cap C') + \chi(A' \cap C) \le 2,$$

and the claim follows by 3-connectivity.

We end the proof by analyzing the cases in Claim 2.

Case 1. $A \cap C = b$.

Neither $A' \cap C$ nor $A \cap C'$ is empty, for otherwise A or C would be a singleton. Hence, by Claim 3, T_a and T_c are triangles. Since $T_a \cap T_c = b$, $T_a(b) = T_c(b)$ by Lemma 3.1, we may set $T_1 = T_a$ and $T_2 = T_b$.

We may suppose from now on that $|A \cap C| > 1$ (and so $\chi(A \cap C) \ge 2$).

Case 2. $A' \cap C' = \emptyset$.

Neither $A'\cap C$ nor $A\cap C'$ is empty, for otherwise A' or C' would be a singleton. Then Claim 3 implies that $T_1=T'_a$ and $T_2=T'_b$ are triangles. These triangles satisfy the conclusion of the theorem.

Case 3. $A' \cap C'$ contains a single element, which will be denoted f.

By submodularity,

$$\chi(A \cup C) + \chi(A \cap C) \le \chi(A) + \chi(C) \le 4.$$

This implies:

$$\chi(\{a,c,f\}) = \chi(A \cup C) \le 4 - \chi(A \cap C) \le 2.$$

Hence $\{a,c,f\}$ is support of a triangle T'. Since $0=T_a\cdot T'=T_a(a)\cdot T'(a)$, $T'(a)=T_a(a)=y$. Similarly, we have T'(c)=y. Hence, we may set $T_1=T_2=T'$.

4. Minimally 3-connected isotropic systems

We will say that an isotropic system (L,V) is minimally 3-connected if and only if it is 3-connected and, at any $v \in V$, at least two minors are not 3-connected.

Lemma 4.1. Let S = (L, V) be an isotropic system such that:

- (i) |V| > 4,
- (ii) there exist neither singular elements nor twins,
- (iii) there exists a 3-connected minor.

Then S is 3 connected.

Proof. Suppose that S satisfies the hypothesis but is not 3-connected. Let $L' = L|_x^v$ be a 3-connected minor. Suppose that A is a 2-separation of L and let χ and χ' be the connectivity functions of L and L' respectively. By working with $V \setminus A$ instead of A, one may assume without loss of generality that $|(V \setminus v) \setminus A| \ge 2$. Thus $\chi(A) \le 1$, $\chi'(A \setminus v) \le 1$, and so $|A \setminus v| \le 1$. Therefore A is a couple of twins in L, a contradiction.

Lemma 4.2. Any cyclic isotropic system is minimally 3-connected.

Proof. Suppose that C_n (n > 4) is a fundamental graph of the isotropic system S = (L, V) and pick $v \in V$. As there exist two triangles T and T' such hat $0 \neq T(v) \neq T'(v) \neq 0$, two of the three minors at v contain twins and are obviously not 3-connected. We have to prove that S is 3-connected: we will proceed by induction.

The conclusion is true for n=5, by Corollary 3.4.

Suppose n > 5. Obviously, S contains neither singular elements nor twins. Pick $v \in V$. As mentioned in Section 2.5, there exists a minor on v which is cyclic. This minor is 3-connected by induction. Hence, S is 3-connected by Lemma 4.1.

Theorem 4.3. Let S = (L, V) be a minimally 3-connected isotropic system, with n = |V| > 4. Then S is cyclic. Furthermore, if for one element of V no minor is 3-connected then n = 5.

Proof.

Claim 1. For any $c \in V$, if $S|_x^c$ and $S|_y^c$ are not 3-connected then there exist two triangles T and T' such that T(c) = x and T'(c) = y.

Lemma 3.5 implies that one of these two triangles — say T — must exist. Pick $b \in \sigma(T)$, $b \neq c$. By Lemma 3.6 applied to b and to the triangle T, there exists a triangle T' such that T'(c) = y.

Pick $c \in V$. By interchanging x, y and z if necessary, we may assume that $S|_x^c$ and $S|_y^c$ are not 3-connected. By Claim 1, we may assume that there exist two triangles T_c and T_b such that $T_c(c) = y$ and $T_b(c) = x$. By Lemma 3.1, there exists $b \in V$, $b \neq c$, such that $0 \neq T_b(b) \neq T_c(b) \neq 0$. We may assume that $T_b(b) = y$ and $T_c(b) = x$. Set $\sigma(T_b) = \{a, b, c\}$ and $\sigma(T_c) = \{b, c, d\}$.

Claim 2. If no minor of S at c is 3-connected then C_5 is a fundamental graph of S.

By Corollary 3.4, it is sufficient to prove that n = 5. Assume that $T_c(d) = x$ and that $S|_y^d$ is not 3-connected. By Lemma 3.4 applied to b and T_c , there exist

two triangles T'_c and T_d such that $T_d(d) = y$, $T'_c(c) = z$, $T'_c(b) = T_d(b)$ (for $S|_z^c$ is not 3-connected).

Case 1. $T_d(b) \neq 0$.

Then $T_c'(b) = T_d(b) = z$ for otherwise $\langle T_c', T_b \rangle \neq 0$ or $\langle T_c', T_b \rangle \neq 0$. As $T_d(c) = 0$, $\langle T_b, T_d \rangle = \langle x, T_d(a) \rangle + \langle y, z \rangle$. Then, $x \neq T_d(a) \neq 0$ for $\langle T_b, T_b \rangle = 0$. Thus T_b, T_c and T_d are three independent vectors. Since the supports are included in $\{a, b, c, d\}$, we have $\chi(\{a, b, c, d\}) \leq 1$, where χ is the connectivity function of S. Therefore, since S is 3-connected, this implies that $|V \setminus \{a, b, c, d\}| \leq 1$.

Case 2. $T_d(b) = 0$.

Then $T'_c(d) \neq 0$, and we conclude as in Case 1, with triangles T_b , T_c and T'_c .

From now on, we may suppose that, if an element belongs to three triangles, the values of these triangles at v are not pairwise distinct (otherwise none of the three minors at v is 3-connected).

Claim 3. If an element belongs to four triangles, then C_5 or C_6 is a fundamental graph of S.

Suppose that c belongs to four distinct triangles T_1 , T_2 , T_3 and T_4 . We may assume, without loss of generality, that $T_1 = T_b$ and $T_2 = T_c$. By the assumption above, $T_b(c)$, $T_c(c)$ and $T_3(c)$ are not pairwise distinct. Set $T_3(c) = T_b(c) = x$. By Lemma 3.3 applied to T_3 and T_b and to T_3 and T_c , $\sigma(T_3) = \{c, d, e\}$, where e is a new element of V. Similarly, $T_b(c)$, $T_c(c)$ and $T_3(c)$ are not pairwise distinct. If $T_4(c) = T_b(c)$, then $\sigma(T_4) = \{c, d, e\} = \sigma(T_3)$, which is impossible by Lemma 3.3. Therefore, $T_4(c) = T_c(c)$. Lemma 3.3 implies the following equalities:

 $- \sigma(T_c) \cap \sigma(T_4) = \{c\},\$

 $- |\sigma(T_b) \cap \sigma(T_4)| = |\sigma(T_d) \cap \sigma(T_4)| = 2,$

 $--\sigma(T_4) = \{a,c,e\}.$

Furthermore, $T_4(a) \neq T_b(a)$ and $T_4(e) \neq T_3(e)$. Hence the four vectors T_b , T_c , T_3 and T_4 are independent. Then $\chi(\{a,b,c,d,e\}) \leq 1$ and $|V \setminus \{a,b,c,d,e\}| \leq 1$.

If $V = \{a, b, c, d, e\}$ then C_5 is a fundamental graph of S. Suppose that |V| = 6 and set $V = \{a, b, c, d, e, f\}$. Then

$$\chi(\{d,e,f\} = \chi(V \backslash \{d,e,f\}) = 2.$$

Hence $\{d, e, f\}$ is the support of a triangle. Similarly, $\{e, f, a\}$ and $\{f, a, b\}$ are supports of triangles. One easily verifies that C_6 is a fundamental graph of S, as shown by the array below:

From now on, we assume that no element belongs to four distinct triangles. By applying Lemma 3.4 to c and T_c (as defined in Claim 2), we get a third triangle T_d . By interchanging b and c if necessary, we may assume that $T_d(b) = 0$ and $T_c(c) \neq 0$

 $T_d(c) \neq 0$. Since the three values $T_b(c)$, $T_c(c)$ and $T_d(c)$ cannot be pairwise distinct, we have $T_d(c) = T_b(c) = x$. Hence, by Lemma 3.3, $T_d(a) = 0$. Let e be the third element of T_d . We may suppose $T_d(d) = y$ and $T_d(e) = x$. Let us rename a, b, c, d, e by s_1 , s_2 , s_3 , s_4 , s_5 and the triangles T_b , T_c , T_d , T_e' by T_2 , T_3 , T_4 , T_5 . Thus, for $2 \leq i \leq 4$, $T_i(s_i) = y$, $T_i(s_{i-1}) = T_i(s_{i+1}) = x$.

By Lemma 3.6 applied to s_{i+1} and T_i , we can continue this construction until we get a triangle T_n with $T_n(s_n) = y$, $T_n(s_{n-1}) = x$, $T_n(s_k) = x$ with k < n-1. We may suppose n > 5.

Claim 4.
$$V = \{s_1, s_2, ..., s_n\}.$$

Suppose that $k \neq 1$. Then s_k belongs to $T_{k-1}, T_k, T_{n-1}, T_n$, which is impossible by the preceding assumption. So, k=1. Therefore, by Lemma 3.3, $T_n(s_k)=T_n(s_1)=T_2(s_1)=x$. By Lemma 3.4 applied to s_1 and T_n , we get a triangle T_1 such that $0 \neq T_1(s_1) \neq T_2(s_1)$. Clearly, by Lemma 3.3, $\sigma(T_1)=\{s_n,s_1,s_2\}$. Let $V'=\{s_1,s_2,\ldots,s_n\}$. One can remark that $\{T_1,T_2,\ldots T_n\}$ is an independent set of $L\times V'$. Therefore, since S is connected, V=V'.

One can easily verify that C_n is a fundamental graph of S, as shown by the array below:

	T_2	T_3	T_4	T_5	 T_n	T_1
s_1	\boldsymbol{x}	0	0	0	 \boldsymbol{x}	y
s_2	y	\boldsymbol{x}	0	0	 0	
s_3	\boldsymbol{x}	y	\boldsymbol{x}	0	 0	0
s_4	0	\boldsymbol{x}	y	\boldsymbol{x}	 0	0
s_{n-1}	0	0	0		 \boldsymbol{x}	0
s_n	0	0	0	0	 y	\boldsymbol{x}

5. Applications

Proposition 5.1. Let S = (L, V) be an isotropic system. If S is bipartite then there exist two supplementary vectors X and Y of K^V such that

$$l = \hat{X} \cap L + \hat{Y} \cap L.$$

Proof. Assume that S is derived from a binary matroid M. Let \mathscr{C} (resp. \mathscr{C}^*) be the linear subspace of 2^V spanned by the circuits of M (resp. the cocircuits of M). Then, there exist two supplementary vectors X and Y of K^V such that $L = \{X \cdot C + Y \cdot C' : C \in \mathscr{C}, C' \in \mathscr{C}^*\}$. This implies that $\hat{X} \cap L = \{X \cdot C : C \in \mathscr{C}\}$ (resp. $\hat{Y} \cap L = \{Y \cdot C' : C' \in \mathscr{C}^*\}$). Then, it follows that $L = \hat{X} \cap L + \hat{Y} \cap L$.

Remark. The converse is true, as proved in [1].

As defined in [9], a matroid M on a set V is said to be minimally 3-connected if M is 3-connected and, for any $v \in V$, each of the two minors M/v and $M \setminus v$ is

not 3-connected. Let W_n be a wheel, for some integer $n \geq 3$, and let $M = \mathcal{M}(W_n)$ be the cycle matroid of W_n . One easily verifies that M is minimally 3-connected. Denote by B the set of the spokes. Clearly, B is a base of M. Therefore, the fundamental graph associated with B is C_{2n} . A theorem of Tutte says that any minimally 3-connected binary matroid is isomorphic to $\mathcal{M}(W_n)$ for some integer n.

Suppose that M is minimally 3-connected binary matroid and let S be the isotropic system derived from M. Then at least two minors of S at v are not 3-connected. Hence S is minimally 3-connected and, by Theorem 4.3, is cyclic. Conversely, Theorem 4.3 implies the binary part of Tutte's theorem. We have just to prove:

Lemma 5.2. Let S = (L, V) be a cyclic isotropic system. Then S is bipartite if and only if |V| is even.

Proof.

(i) Suppose that n is even. Then the graph C_n is bipartite and so S is bipartite.

(ii) Suppose that S is bipartite. By Proposition 5.1, there exist two supplementary vectors X and Y such that $L = L \cap \hat{X} + L \cap \hat{Y}$. Let T be a triangle of L. Then $T = T_X + T_{Y'}$, with $T_X \in L \cap \hat{X}$ and $T_Y \in L \cap \hat{Y}$. By Lemma 4.2, S is 3-connected. Hence, each of the vectors T_X and T_Y is either the null vector or a triangle. Moreover, $T = T_X$ or $T = T_Y$. Let \mathcal{F} the set of triangles of L. We have proved that $\{\mathcal{F} \cap \hat{X}, \mathcal{F} \cap \hat{Y}\}$ is a partition of \mathcal{F} . Define a simple graph $\Gamma = (\mathcal{F}, \mathcal{E})$ as following:

 $TT' \in \mathcal{E}$ if and only if there exists $v \in V$ such that $0 \neq T(v) \neq T'(v) \neq 0$.

Let T_1 and T_2 be two triangles of S. Clearly, if T_1 and T_2 belong to the same class of the bipartition $\{\mathcal{F} \cap \hat{X}, \mathcal{F} \cap \hat{Y}\}$, T_1 and T_2 cannot be adjacent in Γ . Hence Γ is bipartite. But, if C_n is a fundamental graph of S, C_n is isomorphic to a subgraph of Γ (actually, C_n is isomorphic to Γ for $n \geq 7$). This implies that n is even.

6. Prime graphs

Suppose that G = (V, E) is a simple graph. A *split*, as defined in [7] is a partition $\{A, B\}$ of E such that:

 $- |A| \ge 2, |B| \ge 2,$

— the cocircuit $\delta(A, B)$ (i.e. the set $\{ab \in E : a \in A, b \in B\}$) is the set of the edges of a complete bipartite graph, with chromatic classes $A' \subseteq A$ and $B' \subseteq B$.

G is said to be *prime* is there exist no splits. As proved in [6], a graph with at least four vertices is prime if and only if the isotropic system S having G as fundamental graph is 3-connected. Indeed $\{A,B\}$ is a split of G if and only if A and B are 2-separations of S.

Suppose that G = (V, E) is a prime graph with at least six vertices and that S = (L, V) is the isotropic system having G as fundamental graph. Then G is not locally equivalent to C_5 and so, by Theorem 4.3, there exists a 3-connected minor $S|_t^v$ of S, where $v \in V$. Then, as mentioned in Section 2.4, one out of the graphs $G \setminus v$, $G^*v \setminus v$ and $(G^*vw)/v$ (where w is a neighbour of v) is prime. This result has been proved directly in [2]. We give a strengthening of this result:

Theorem 5.3. Let G = (V, E) be a prime graph, with $|V| \ge 6$. There exists a vertex v such that $G \setminus v$ or $G^*v \setminus v$ is prime.

Proof. Suppose that (G, A, B) is a graphic presentation of an isotropic system S = (L, V) and set n = |V|. As mentioned in Section 2, $G \setminus v$ (resp. $G^*v \setminus v$) is a fundamental graph of $S|_{A(v)}^v$ (resp. $S|_{A(v)+B(v)}^v$).

- (i) Suppose that S is not cyclic. By Theorem 4.3, there exists $v \in V$ such that two minors at v are 3-connected. One of these minors is not equal to $S|_{B(v)}^v$. Hence, $G \setminus v$ or $G^*v \setminus v$ is a fundamental graph of this 3-connected minor and so it is prime.
- (ii) Suppose that S is cyclic. Let (C_n, X, Y) be a graphic presentation of S having C_n as fundamental graph. We may assume without loss of generality that X(v) = x and Y(v) = y for any vertex v. Suppose that the sequence of vertices in C_n is (s_1, s_2, \ldots, s_n) . Let $(T_i : 1 \le i \le n)$ be the fundamental basis associated with this presentation. Then, for $1 \le i \le n$ (the indices are computed modulo n), we have:
 - $-T_i(s_i)=y,$
 - $T_i(s_{i+1}) = X(s_{i-1}) = x, \quad T_i(s_{i-1}) = X(s_{i-1}) = x,$
 - $T_i(s_i) = 0 \text{ if } i \notin \{i-1, i, i+1\}.$

Hence, for any $v \in V$, none of the minors $S|_x^v$ and $S|_y^v$ is 3-connected, for each of them contains twins. Then the single 3-connected minor at v is $S|_x^v$. We have to prove $B \neq X + Y$ or, equivalently, that there exists v such that $B(v) \neq z$.

Suppose, on the contrary, that B=X+Y. Let $(U_i\colon 1\le i\le n)$ be the fundamental basis associated to the graphic presentation (G,A,B). Then $U(v_i)=B(v_i)=z$ for $1\le i\le n$. Since $U_1\cdot T_1=0$ and $U_1(s_1)\cdot T_1(s_1)\ne 0$, we have $U_1(s_n)\cdot T_1(s_n)\ne 0$ or $U_1(s_2)\cdot T_1(s_2)\ne 0$. By symmetry, we may assume that $U_1(s_2)\cdot T_1(s_2)\ne 0$. Hence $0\ne U_1(s_2)=A(s_2)\ne B(s_2)$, $U_1(s_2)\ne T_1(s_2)=x$. Therefore, $U_1(s_2)=y$. Let k be an integer such that, for $1\le i\le k$, $U_1(s_i)=y$. If $k\ne n$, the same argument applied to T_k instead of T_1 , implies that $U_1(s_{k+1})=y$. Hence, $U_1(v)=y$ for any $v\in V$. But then $U_1\cdot T_1=U_1(s_n)\cdot T_1(s_n)+U_1(s_1)\cdot T_1(s_1)+U_1(s_2)\cdot T_1(s_2)=y\cdot x+z\cdot y+y\cdot x\ne 0$, a contradiction for U_1 and T_1 belong to L.

References

- [1] L. Allys: 3-connexité dans les systèmes isotropes, Thèse, Université du Maine (1992).
- [2] A. BOUCHET: Reducing prime graphs and recognizing circle graphs, Combinatorica 7 (1987), 243–254.
- [3] A. BOUCHET: Isotropic systems, European J. of Combin. 8 (1987), 231-244.
- [4] A. BOUCHET: Digraph decomposition and Eulerian systems, SIAM J. Alg. Disc. Meth. 8 (1987), 323–337.
- [5] A. BOUCHET: Graphic representations of isotropic systems, J. Combinatorial Theory B 45 (1988), 58-76.
- [6] A. BOUCHET: Connectivity of isotropic systems, Annals of the New York Academy of Sciences 555 (1989), 81–93.
- [7] W. Cunningham and J. Edmonds: A combinatorial decomposition theory, Canad. J. Math. XXXII (1982), 734–765.
- [8] W. Cunningham: Decomposition of directed graphs, SIAM J. Alg. Disc. Meth. 3 (1987), 214–218.

[9] W. TUTTE: Connectivity in matroids, Canad. J. Math. 18 (1966), 1301–1324.
[10] D. J. A. WELSH: Matroid Theory, London Math. Soc. Monographs 8, Academic Press, New York, 1976.

Loïc Allys

Université du Maine Départment d'Informatique Route de Laval, 72017 LE MANS CEDEX FRANCE